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EXTREME MODES IN THE SYSTEM OF DIFFERENTIAL
HEAT- AND MASS-TRANSFER EQUATIONS

A. V. Lykov UDC 536.24.02
With regard to the desiccation process and the experimental methods of determining the
thermophysical characteristics of capillary-porous colloidal bodies, the system of dif-

ferential heat- and mass-transfer equations is analyzed for extreme modes.

The system of heat- and mass-transfer equations
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describes the molecular (diffusive) transfer of mass (moisture) and heat through capillary-porous bodies.
It is assumed in the derivation of Egs. (1) and (2) that the coefficients of heat and mass transfer (A, ap,,
ag, a) as well as the thermophysical properties (¢, r, gy, 6) are independent of the coordinates. Further-
more, the temperature of moisture in the capillaries is considered equal to the temperature of capillary
walls throughout the entire process of heat and mass transfer, which is true only in the case of diffusive
transfer (convective transfer, including filtration, is disregarded here). Coefficients Kij (i,j=1,2)are
not subject to the mutuality principle, i.e., Kij = Kji and for liquid— vapor moisture [1]

Ky=a, K,=al =a,b, (3)
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Equations (1) and (2) describe the transient as well as the steady heat and mass transfer. In the case

of desiccation (transient heat and moisture transfer), the second term on the right-hand side of (2) may be
replaced by (ery,/c)(du/97), because for moisture sources in the vapor—liquid system we have
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The system of equations (1), (2) is retained here, only coefficients K,, and K, become
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We will now consider the extreme modes.

1) The temperature of the moist capillary-porous body will be assumed constant throughout the pro-
cess of heat and mass transfer: 8T /87 = 0. There are two possibilities then: a) from Eq. (2) follows V>T
=0 and V2u = 0, This is a trivial case of equilibrium (the temperature and the moisture content not only do
not vary with the time but are also independent of the space coordinates: u = const and T = const), b) Since
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T = T(x;, 7) and u = u(xj, 7), hence from (2) with 8T /07 = 0 follows

u

T = f(xi)r (“6)
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i.e., the moisture field and the temperature field are similar. Inasmuch as the form of the distribution
function f(x;) does not depend on time, the local velocity du/87 will, in accordance with Eq. (1), be also
independent of time,

In the special case

glf— = const (7
ot

the distribution of temperature and moisture in one-dimensional problems is described by a simple para~-
bola, This is the case during the consfant-rate period of the desiccation process. The moisture content
at any point is a linear function of time (du/987 = const), while the moisture profile across the body thick-
ness (infinitely large plate, cylinder, sphere) is described by a parabola. The temperature at any point
does not vary with time (8T/87 = 0). If during the constant-rate desiccation period there occurs evapora-
tion inside the body (¢ = 0, ayy; = 0), then, according to (6) with Ky = 0, the temperature profile in such
one-dimensional problems is described by a parabola. c¢) In the special case without evaporation of mois-
ture inside the body during the constant-rate desiccation period (& = 0 or apy, = 0) the temperature is the
same at all points of the body and, to the first approximation, equal to the wet-bulb temperature Ty (T
= Ty = const, V2T =0). This does not contradict relation (8), because & = 0 and Ky = 0 but K,, = 0 and
Viu =0 for V’T = 0. Indeed, for 8T/9T =0, from (2) rewritten as
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follows that V2T = 0 when ¢ = 0.

From here Eq. (1) yields the classical equation of diffusion

Ly (1a)
ot

indicating that the moisture transfer during the constant-rate period of desiccation is an isothermal pro-
cess,

At a constant desiccation rate (du/dr = const) the local rate du/8r is also constant. It then follows
from (1a) that

Vi = const  at gbi = const. (6a)
T

This is noted during the desiccation of slowly drying colloidal materials as, for example, gelatin.

All these modes of moisture and temperature distribution occur during the constant-rate period
of desiceation in capillary-porous colloidal bodies and, as of now, are deduced from experimental evi-
dence and empirical laws.

2) The moisture content in a body will now be assumed constant throughout the process of heat and
mass transfer (quasisteady state during the heating of a moist body), i.e., du/87 = 0. It then follows from
(1) that

e — K oo gu_

viu K, v at = 0. (8)
KKy =am=0and K, =a% =0, then the moisture field is similar to the temperature field. Atdu/d7 =0,
however, the local rate 8T /87 = 0, in accordance with Eq. (2), i.e., the temperature profile inside the
body does not vary with time, because the temperature at all points in the body varies with time accord-
ing to the same law, Such situations are encountered in experimental thermophysics as, for example,
during the quasisteady heating of a moist body for the determination of the temperature-gradient coef-
ficient, the thermal diffusivity, and the thermal conductivity, In this method the moist body is heated at a
constant rate (the ambient temperature rises linearly with time). From some instant on, the temperature
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at any point in the body becomes a linear function of time and the temperature profile in one-dimensional
cases with symmetry is described by a parabola [2]. The moisture profile corresponding to a parabolic
temperature profile is also parabolic, From the drops in temperature and moisture content one deter-
mines coefficients ¢ and 6, whereupon, if the heat-transfer coefficient is known, the thermal conductivity
can also be determined [3]. It is entirely plausible that a trivial situation may occur in case (2) with du
/87 =0, namely 8T /8T = 0 when VZu = 0 and V2T = 0 (steady or equilibrium state).

In conclusion, we will consider Egs. (1) and (2) becoming the equation of heat conduction, their be-
coming the equation of diffusion having been discussed earlier. In a perfectly dry body there occurs no
mass transfer (Ky; =Kj, =Ky = 0at u=0) and from (1), (2) there follows the equation of heat conduction*

o _ Kooy*T =ay?T. (9)

ot
The same equation will be obtained from (1), (2) for a moist body with the maximum possible moisture
content umyx (distension moisture). At moderate temperature drops there will be no moisture transfer
then (Kj; = K, = Ky; = 0 when u = up,,) and, consequently, 3u/87 = 0 with Eq. (9) following from (1) and
(2). In this case the moist body heats up like a dry body, namely without a redistribution and evaporation
of moisture (the moisture content at any point in the body remains constant and equal to uyz%). The sys-
tem of equations of heat and mass transfer under a pressure gradient (VP = 0) can be analyzed in an
analogous manner. The earlier results remain valid here too. It must be assumed here that the moisture
and the matrix body are at the same temperature and that Darcy's law (convective diffusion) applies. Other
assumption concerning the thermophysical properties are also retained.

It is noted, finally, that only an analysis of the solution to system (1}, (2) has made it possible not
only to thoroughly explain the mechanism of heat and mass transfer during desiccation of diverse ma-
terials but also to develop several quick methods of measuring the thermophysical properties of moist
capillary-porous materials {4].

NOTATION

u=ulxq, 7) is the moisture content in a body;
u=ur) is the mean moisture content;
T =T(xj, T) is the temperature of a body;
T is the time;
Xi is the Cartesian coordinates (i =1, 2, 3: %, =X, X, =y, X3 =12);
a is the thermal diffusivity;
A is the thermal conductivity;
c is the specific heat of moist material;
Py is the density of perfectly dry material;
Ay =Amy +@yy 18 the moisture diffusivity;
amy is the diffusivity of vapor moisture;
Amo is the diffusivity of liquid moisture;
Ty is the specific heat of liquid evaporation or of vapor condensation (rj, = ry);
al is the moisture thermodiffusivity;
o is the temperature-gradient coefficient.
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*Tt follows from the equality u = 0 with coefficient K, = 0, according to Eq. (1), VT =0,
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